《本福特法则》
本福德法则说明,一堆从实际生活得出的数据之中。
以1为首位数字的数的出现机率约为总数的三成,接近期望值九分之一的3倍。
推广来说,越大的数,以它为首位的数出现的机率就越低。
意思就是,一堆自然产生的数据,它的首位数字从1到9都有可能,比如18、29、98、72。
如果这些无序数据足够多,那我们很自然的认为,他的首位数字从1到9出现的概率当然就是九分之一。
可实际上不是的,1出现的概率大概是301,而2出现的概率则是锐减到了176,以此类推,到了9,出现的概率只有46。
这是一个很有意思的法则,它不但可以用来查账,而且适用于我们身边的方方面面。
比如河流的长度、湖泊的面积、人口、物理化学的常数、每个城市的人均收入,每天有多少人约了炮儿,多少人表了白,多少二哈拆了家
账目你可以做的很平,天衣无缝,也可以让收支源头无法追溯。
但是,假的就是假的,与自然产生的原始数据有根本差别。
内容未完,下一页继续阅读